วันเสาร์ที่ 14 มีนาคม พ.ศ. 2558

The Spermatozoön

http://www.bartleby.com/

The Spermatozoön
 
The spermatozoa or male germ cells are developed in the testes and are present in enormous numbers in the seminal fluid. Each consists of a small but greatly modified cell. The human spermatozoön possesses a head, a neck, a connecting piece or body, and atail    1


FIG. 6– Human spermatozoön. Diagrammatic. A. Surface view. B. Profile view. In C the head, neck, and connecting piece are more highly magnified. (See enlarged image)

  The head is oval or elliptical, but flattened, so that when viewed in profile it is pear-shaped. Its anterior two-thirds are covered by a layer of modified protoplasm, which is named the head-cap. This, in some animals, e. g., the salamander, is prolonged into a barbed spear-like process or perforator, which probably facilitates the entrance of the spermatozoön into the ovum. The posterior part of the head exhibits an affinity for certain reagents, and presents a transversely striated appearance, being crossed by three or four dark bands. In some animals a central rodlike filament extends forward for about two-thirds of the length of the head, while in others a rounded body is seen near its center. The head contains a mass of chromatin, and is generally regarded as the nucleus of the cell surrounded by a thin envelope.   2
  The neck is less constricted in the human spermatozoön than in those of some of the lower animals. The anterior centriole, represented by two or three rounded particles, is situated at the junction of the head and neck, and behind it is a band of homogeneous substance.

   3
  The connecting piece or body is rod-like, and is limited behind by a terminal disk. Theposterior centriole is placed at the junction of the body and neck and, like the anterior, consists of two or three rounded particles. From this centriole an axial filament,surrounded by a sheath, runs backward through the body and tail. In the body the sheath of the axial filament is encircled by a spiral thread, around which is an envelope containing mitochondria granules, and termed the mitochondria sheath.   4
  The tail is of great length, and consists of the axial thread or filament, surrounded by its sheath, which may contain a spiral thread or may present a striated appearance. The terminal portion or end-piece of the tail consists of the axial filament only.   5


FIG. 7– Scheme showing analogies in the process of maturation of the ovum and the development of the spermatids (young spermatozoa). (See enlarged image)


 


  Krause gives the length of the human spermatozoön as between 52μ and 62μ, the head measuring 4 to 5μ, the connecting piece 6μ, and the tail from 41μ to 52μ.   6
  By virtue of their tails, which act as propellers, the spermatozoa are capable of free movement, and if placed in favorable surroundings, e. g., in the female passages, will retain their vitality and power of fertilizing for several days. In certain animals, e. g., bats, it has been proved that spermatozoa retained in the female passages for several months are capable of fertilizing.

   7
  

Your Body's Systems

www.factmonster.com


Circulatory System

Medical Illustration of the Human Heart
The circulatory system is the body's transport system. It is made up of a group of organs that transport blood throughout the body. The heart pumps the blood and the arteries and veins transport it. Oxygen-rich blood leaves the left side of the heart and enters the biggest artery, called the aorta. The aorta branches into smaller arteries, which then branch into even smaller vessels that travel all over the body. When blood enters the smallest blood vessels, which are called capillaries, and are found in body tissue, it gives nutrients and oxygen to the cells and takes in carbon dioxide, water, and waste. The blood, which no longer contains oxygen and nutrients, then goes back to the heart through veins. Veins carry waste products away from cells and bring blood back to the heart , which pumps it to the lungs to pick up oxygen and eliminate waste carbon dioxide.


Digestive System

The digestive system is made up of organs that break down food into protein, vitamins, minerals, carbohydrates, and fats, which the body needs for energy, growth, and repair. After food is chewed and swallowed, it goes down the esophagus and enters the stomach, where it is further broken down by powerful stomach acids. From the stomach the food travels into the small intestine. This is where your food is broken down into nutrients that can enter the bloodstream through tiny hair-like projections. The excess food that the body doesn't need or can't digest is turned into waste and is eliminated from the body.

Endocrine System

The endocrine system is made up of a group of glands that produce the body's long-distance messengers, or hormones.Hormones are chemicals that control body functions, such as metabolism, growth, and sexual development. The glands, which include the pituitary gland, thyroid gland, parathyroid glands, adrenal glands, thymus gland, pineal body, pancreas, ovaries, and testes, release hormones directly into the bloodstream, which transports the hormones to organs and tissues throughout the body.


Immune System

The immune system is our body's defense system against infections and diseases. Organs, tissues, cells, and cell products work together to respond to dangerous organisms (like viruses or bacteria) and substances that may enter the body from the environment. There are three types of response systems in the immune system: the anatomic response, the inflammatory response, and the immune response.
  • The anatomic response physically prevents threatening substances from entering your body. Examples of the anatomic system include the mucous membranes and the skin. If substances do get by, the inflammatory response goes on attack.
  • The inflammatory system works by excreting the invaders from your body. Sneezing, runny noses, and fever are examples of the inflammatory system at work. Sometimes, even though you don't feel well while it's happening, your body is fighting illness.
  • When the inflammatory response fails, the immune response goes to work. This is the central part of the immune system and is made up of white blood cells, which fight infection by gobbling up antigens. About a quarter of white blood cells, called the lymphocytes, migrate to the lymph nodes and produce antibodies, which fight disease.

Lymphatic System

The lymphatic system is also a defense system for the body. It filters out organisms that cause disease, produces white blood cells, and generates disease-fighting antibodies. It also distributes fluids and nutrients in the body and drains excess fluids and protein so that tissues do not swell. The lymphatic system is made up of a network of vessels that help circulate body fluids. These vessels carry excess fluid away from the spaces between tissues and organs and return it to the bloodstream.


Muscular System

The muscular system is made up of tissues that work with the skeletal system to control movement of the body. Some muscles—like the ones in your arms and legs—are voluntary, meaning that you decide when to move them. Other muscles, like the ones in your stomach, heart, intestines and other organs, are involuntary. This means that they are controlled automatically by the nervous system and hormones—you often don't even realize they're at work.
The body is made up of three types of muscle tissue: skeletal, smooth and cardiac. Each of these has the ability to contract and expand, which allows the body to move and function. .
  • Skeletal muscles help the body move.
  • Smooth muscles, which are involuntary, are located inside organs, such as the stomach and intestines.
  • Cardiac muscle is found only in the heart. Its motion is involuntary

Nervous System

The nervous system is made up of the brain, the spinal cord, and nerves. One of the most important systems in your body, the nervous system is your body's control system. It sends, receives, and processes nerve impulses throughout the body. These nerve impulses tell your muscles and organs what to do and how to respond to the environment. There are three parts of your nervous system that work together: the central nervous system, the peripheral nervous system, and the autonomic nervous system.
  • The central nervous system consists of the brain and spinal cord. It sends out nerve impulses and analyzes information from the sense organs, which tell your brain about things you see, hear, smell, taste and feel.
  • The peripheral nervous system includes the craniospinal nerves that branch off from the brain and the spinal cord. It carries the nerve impulses from the central nervous system to the muscles and glands.
  • The autonomic nervous system regulates involuntary action, such as heart beat and digestion.

Reproductive System

The reproductive system allows humans to produce children. Sperm from the male fertilizes the female's egg, or ovum, in the fallopian tube. The fertilized egg travels from the fallopian tube to the uterus, where the fetus develops over a period of nine months.

Respiratory System

The respiratory system brings air into the body and removes carbon dioxide. It includes the nose, trachea, and lungs. When you breathe in, air enters your nose or mouth and goes down a long tube called the trachea. The trachea branches into two bronchial tubes, or primary bronchi, which go to the lungs. The primary bronchi branch off into even smaller bronchial tubes, or bronchioles. The bronchioles end in the alveoli, or air sacs. Oxygen follows this path and passes through the walls of the air sacs and blood vessels and enters the blood stream. At the same time, carbon dioxide passes into the lungs and is exhaled.


Skeletal System

The skeletal system is made up of bones, ligaments and tendons. It shapes the body and protects organs. The skeletal system works with the muscular system to help the body move. Marrow, which is soft, fatty tissue that produces red blood cells, many white blood cells, and other immune system cells, is found inside bones.

Urinary System

The urinary system eliminates waste from the body, in the form of urine. The kidneys remove waste from the blood. The waste combines with water to form urine. From the kidneys, urine travels down two thin tubes called ureters to the bladder. When the bladder is full, urine is discharged through the urethra.


The heart and circulation.

The heart and circulation.
The heart is the body's engine room, responsible for pumping life-sustaining blood via a 60,000-mile-long (97,000-kilometer-long) network of vessels. The organ works ceaselessly, beating 100,000 times a day, 40 million times a year—in total clocking up three billion heartbeats over an average lifetime. It keeps the body freshly supplied with oxygen and nutrients, while clearing away harmful waste matter.
The fetal heart evolves through several different stages inside the womb, first resembling a fish's heart, then a frog's, which has two chambers, then a snake's, with three, before finally adopting the four-chambered structure of the human heart.
About the size of its owner's clenched fist, the organ sits in the middle of the chest, behind the breastbone and between the lungs, in a moistened chamber that is protected all round by the rib cage. It's made up of a special kind of muscle (cardiac muscle) that works involuntarily, so we don't have to think about it. The heart speeds up or slow downs automatically in response to nerve signals from the brain that tell it how much the body is being exerted. Normally the heart contracts and relaxes between 70 and 80 times per minute, each heartbeat filling the four chambers inside with a fresh round of blood.

These cavities form two separate pumps on each side of the heart, which are divided by a wall of muscle called the septum. The upper chamber on each side is called the atrium. This is connected via a sealing valve to the larger, more powerful lower chamber, or ventricle. The left ventricle pumps most forcefully, which is why a person's heartbeat is felt more on the left side of the chest.

When the heart contracts, the chambers become smaller, forcing blood first out of the atria into the ventricles, then from each ventricle into a large blood vessel connected to the top of the heart. These vessels are the two main arteries. One of them, the pulmonary artery, takes blood to the lungs to receive oxygen. The other, the aorta, transports freshly oxygenated blood to the rest of the body. The vessels that bring blood to the heart are the veins. The two main veins that connect to the heart are called the vena cava.

Blood Delivery
Since the heart lies at the center of the blood delivery system, it is also central to life. Blood both supplies oxygen from the lungs to the other organs and tissues and removes carbon dioxide to the lungs, where the gas is breathed out. Blood also distributes nourishment from the digestive system and hormones from glands. Likewise our immune system cells travel in the bloodstream, seeking out infection, and blood takes the body's waste products to the kidneys and liver to be sorted out and trashed.
Given the heart's many essential functions, it seems wise to take care of it. Yetheart disease has risen steadily over the last century, especially in industrialized countries, due largely to changes in diet and lifestyle. It has become the leading cause of death for both men and women in the United States, claiming almost 700,000 lives a year, or 29 percent of the annual total. Worldwide, 7.2 million people die from heart disease every year.